In this paper, we evaluate eight popular and open-source 3D Lidar and visual SLAM (Simultaneous Localization and Mapping) algorithms, namely LOAM, Lego LOAM, LIO SAM, HDL Graph, ORB SLAM3, Basalt VIO, and SVO2. We have devised experiments both indoor and outdoor to investigate the effect of the following items: i) effect of mounting positions of the sensors, ii) effect of terrain type and vibration, iii) effect of motion (variation in linear and angular speed). We compare their performance in terms of relative and absolute pose error. We also provide comparison on their required computational resources. We thoroughly analyse and discuss the results and identify the best performing system for the environment cases with our multi-camera and multi-Lidar indoor and outdoor datasets. We hope our findings help one to choose a sensor and the corresponding SLAM algorithm combination suiting their needs, based on their target environment.
翻译:在本文中,我们评估了八种广受欢迎的开放源3D激光雷达和视觉SLAM(同时定位和绘图)算法,即LOMA、Lego LOMA、LIO SAM、HDL图、ORB SLM3、Basalt VIO和SVO2。 我们设计了室内和室外实验,以调查下列物品的影响:(一) 传感器升降位置的影响,(二) 地形类型和振动的影响,(三) 运动的效果(线性和角性速度的变异),我们比较了它们相对和绝对构成错误的性能,我们还比较了它们所需要的计算资源。我们用我们的多镜头和多激光室内和室外数据集,透彻地分析和讨论结果并确定环境案例的最佳系统。我们希望我们的调查结果有助于人们根据目标环境选择传感器和相应的SLAM算法组合,以适应它们的需求。