We consider the statistical analysis of heterogeneous data for clustering and prediction purposes, in situations where the observations include functions, typically time series. We extend the modeling with Mixtures-of-Experts (ME), as a framework of choice in modeling heterogeneity in data for prediction and clustering with vectorial observations, to this functional data analysis context. We first present a new family of functional ME (FME) models, in which the predictors are potentially noisy observations, from entire functions, and the data generating process of the pair predictor and the real response, is governed by a hidden discrete variable representing an unknown partition, leading to complex situations to which the standard ME framework is not adapted. Second, we provide sparse and interpretable functional representations of the FME models, thanks to Lasso-like regularizations, notably on the derivatives of the underlying functional parameters of the model, projected onto a set of continuous basis functions. We develop dedicated expectation--maximization algorithms for Lasso-like regularized maximum-likelihood parameter estimation strategies, to encourage sparse and interpretable solutions. The proposed FME models and the developed EM-Lasso algorithms are studied in simulated scenarios and in applications to two real data sets, and the obtained results demonstrate their performance in accurately capturing complex nonlinear relationships between the response and the functional predictor, and in clustering.
翻译:我们考虑为集群和预测目的对各种数据进行统计分析,以便在观测包括功能、通常是时间序列的情况下,为集群和预测目的,对不同数据进行统计分析;我们将与专家混合模型(ME)建模作为模型模型用于预测和与矢量观测相结合的数据的选用框架,用于这种功能性数据分析背景;我们首先提出功能性ME(FME)模型的新组合,其中预测者对整个功能性功能性观测进行潜在的噪音观测,对配方预测员和真实反应的数据生成过程由隐蔽的离散变量调节,代表未知的分区,导致无法对标准ME框架进行调整的复杂情况。第二,我们提供FME模型的稀少和可解释的功能性描述,这要归功于Lasso式的正规化,特别是模型基本功能性参数的衍生物,要预测成一套连续的基础功能性功能。我们为类似激光式的常规性最大相似的预测值和真实性准值的参数估算战略制定了专门的预期-最大值算法,以鼓励分散和可解释的解决办法。在模拟和模拟性预测性假设中,两个拟议FME模型和已开发的功能性预测性逻辑应用中,在模拟和模拟的模型中,在模拟中和模拟分析结果中研究的模型中,其模拟和模拟结果和模拟结果中,其模拟结果和模拟分析结果和模拟结果中,是研究的、模拟和模拟的计算结果和模拟的计算结果的计算结果。