While a growing body of literature has been studying new Graph Neural Networks (GNNs) that work on both homophilic and heterophilic graphs, little work has been done on adapting classical GNNs to less-homophilic graphs. Although lacking the ability to work with less-homophilic graphs, classical GNNs still stand out in some properties such as efficiency, simplicity and explainability. We propose a novel graph restructuring method to maximize the benefit of prevalent GNNs with the homophilic assumption. Our contribution is threefold: a) learning the weight of pseudo-eigenvectors for an adaptive spectral clustering that aligns well with known node labels, b) proposing a new homophilic metric that measures how two nodes with the same label are likely to be connected, and c) reconstructing the adjacency matrix based on the result of adaptive spectral clustering to maximize the homophilic scores. The experimental results show that our graph restructuring method can significantly boost the performance of six classical GNNs by an average of 25% on less-homophilic graphs. The boosted performance is comparable to state-of-the-art methods.


翻译:虽然越来越多的文献正在研究新的图象神经网络(GNNs),这些图象既研究同性图,也研究异性病图,但是在将古典GNS改制成较少嗜血病图方面几乎没有做多少工作。虽然缺乏使用较少嗜血病图的能力,但古典GNNs在一些特性方面仍然很突出,例如效率、简洁和可解释性。我们提出了一个新颖的图象重组方法,以尽量扩大流行的GNS与同性假设的效益。我们的贡献有三重:a)学习假基因人对适应性光谱组合的重量,这种组合与已知节点标签非常吻合,b)提出一种新的同性指标,以测量同一标签的两个节点可能如何连接,c)根据适应性光谱组合的结果重建相近矩阵,以最大限度地提高同性分数。实验结果显示,我们的图表重组方法可以大大提高6个古典GNNS的性能,在较少嗜血病图上平均增加25%。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员