Graph neural networks (GNNs) have been shown to possess strong representation power, which can be exploited for downstream prediction tasks on graph-structured data, such as molecules and social networks. They typically learn representations by aggregating information from the $K$-hop neighborhood of individual vertices or from the enumerated walks in the graph. Prior studies have demonstrated the effectiveness of incorporating weighting schemes into GNNs; however, this has been primarily limited to $K$-hop neighborhood GNNs so far. In this paper, we aim to design an algorithm incorporating weighting schemes into walk-aggregating GNNs and analyze their effect. We propose a novel GNN model, called AWARE, that aggregates information about the walks in the graph using attention schemes. This leads to an end-to-end supervised learning method for graph-level prediction tasks in the standard setting where the input is the adjacency and vertex information of a graph, and the output is a predicted label for the graph. We then perform theoretical, empirical, and interpretability analyses of AWARE. Our theoretical analysis in a simplified setting identifies successful conditions for provable guarantees, demonstrating how the graph information is encoded in the representation, and how the weighting schemes in AWARE affect the representation and learning performance. Our experiments demonstrate the strong performance of AWARE in graph-level prediction tasks in the standard setting in the domains of molecular property prediction and social networks. Lastly, our interpretation study illustrates that AWARE can successfully capture the important substructures of the input graph. The code is available on $\href{https://github.com/mehmetfdemirel/aware}{GitHub}$.


翻译:显示其具有强大的代表力,可用于在分子和社会网络等图表结构数据中进行下游预测任务,例如分子和社会网络。它们通常通过汇总个人脊椎周围的K$-hop信息或图表中列举的行走来学习表示力。先前的研究显示,将加权办法纳入GNNS是有效的;然而,迄今为止,这主要限于$-k$-hop邻居GNNS。在本文中,我们的目标是设计一种算法,将加权办法纳入步行聚合GNNS并分析其效果。我们提议了一个叫AWARRE的新型GNN图形模型模型,该模型利用注意办法将关于图表中行走的信息汇总起来。这导致在标准环境中,将加权办法纳入GPNS的加权办法;但是,这主要局限于一个图表的相近和顶点信息,而产出是该图的预测标签。我们随后对AWARE进行理论、实证和可解释性能分析。我们在一个简化的简化的设置中确定重要条件的GNNNNRE 数据库中,展示了我们高级的数学模型模型模型的模拟结构,展示了我们进行如何演化的深度分析。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月2日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2022年10月2日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员