As more and more artificial intelligence (AI) technologies move from the laboratory to real-world applications, the open-set and robustness challenges brought by data from the real world have received increasing attention. Data augmentation is a widely used method to improve model performance, and some recent works have also confirmed its positive effect on the robustness of AI models. However, most of the existing data augmentation methods are heuristic, lacking the exploration of their internal mechanisms. We apply the explainable artificial intelligence (XAI) method, explore the internal mechanisms of popular data augmentation methods, analyze the relationship between game interactions and some widely used robustness metrics, and propose a new proxy for model robustness in the open-set environment. Based on the analysis of the internal mechanisms, we develop a mask-based boosting method for data augmentation that comprehensively improves several robustness measures of AI models and beats state-of-the-art data augmentation approaches. Experiments show that our method can be widely applied to many popular data augmentation methods. Different from the adversarial training, our boosting method not only significantly improves the robustness of models, but also improves the accuracy of test sets. Our code is available at \url{https://github.com/Anonymous_for_submission}.


翻译:随着越来越多的人工智能(AI)技术从实验室转向现实世界应用,来自真实世界的数据带来的开放性和稳健性挑战日益受到越来越多的关注。数据增强是用来改进模型性能的一种广泛使用的方法,最近的一些工作也证实了其对AI模型的稳健性的积极影响。然而,大多数现有的数据增强方法都是超强的,缺乏对内部机制的探索。我们采用可解释的人工智能(XAI)方法,探索流行数据增强方法的内部机制,分析游戏互动和一些广泛使用的稳健度度量度指标之间的关系,并提出开放环境模型稳健性的新替代物。我们根据对内部机制的分析,开发了一种基于面具的增强数据增强方法,全面改进了AI模型的若干稳健性计量,并击败了最新数据增强方法。实验表明,我们的方法可以广泛应用于许多流行的数据增强方法。不同于对口培训,我们的增强方法不仅大大改进了模型的稳健性,而且还提高了测试组的准确性。我们的数据代码可在http://Angur_com}

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员