Spectral subsampling MCMC was recently proposed to speed up Markov chain Monte Carlo (MCMC) for long stationary univariate time series by subsampling periodogram observations in the frequency domain. This article extends the approach to multivariate time series using a multivariate generalisation of the Whittle likelihood. To assess the computational gains from spectral subsampling in challenging problems, a multivariate generalisation of the autoregressive tempered fractionally integrated moving average model (ARTFIMA) is introduced and some of its properties derived. Bayesian inference based on the Whittle likelihood is demonstrated to be a fast and accurate alternative to the exact time domain likelihood. Spectral subsampling is shown to provide up to two orders of magnitude additional speed-up, while retaining MCMC sampling efficiency and accuracy, compared to spectral methods using the full dataset. Keywords: Bayesian, Markov chain Monte Carlo, Semi-long memory, Spectral analysis, Whittle likelihood.
翻译:最近有人提议,通过在频率域中进行子抽样时间序列观测,加速Markov链蒙泰卡洛(MCMC MC)的长期固定非象形时间序列。此条扩展了使用惠特尔概率的多变概观的多变时间序列方法。为了评估在具有挑战性的问题中从光谱子取样中获得的计算收益,引入了自动递减性温度分数集成移动平均模型(ARTIFMA)的多变概观,并得出了其中的一些特性。基于惠特尔概率的巴伊斯推论被证明是精确时间域概率的快速和准确的替代物。光谱子取样显示提供最多为两个数量级的额外加速,同时保留MC取样效率和准确性,与使用全数据集的光谱方法相比。关键词:巴伊西亚、马尔科夫链蒙特卡洛、半长内存、光谱分析、惠特尔概率。