Temporal Point Processes (TPP) are probabilistic generative frameworks. They model discrete event sequences localized in continuous time. Generally, real-life events reveal descriptive information, known as marks. Marked TPPs model time and marks of the event together for practical relevance. Conditioned on past events, marked TPPs aim to learn the joint distribution of the time and the mark of the next event. For simplicity, conditionally independent TPP models assume time and marks are independent given event history. They factorize the conditional joint distribution of time and mark into the product of individual conditional distributions. This structural limitation in the design of TPP models hurt the predictive performance on entangled time and mark interactions. In this work, we model the conditional inter-dependence of time and mark to overcome the limitations of conditionally independent models. We construct a multivariate TPP conditioning the time distribution on the current event mark in addition to past events. Besides the conventional intensity-based models for conditional joint distribution, we also draw on flexible intensity-free TPP models from the literature. The proposed TPP models outperform conditionally independent and dependent models in standard prediction tasks. Our experimentation on various datasets with multiple evaluation metrics highlights the merit of the proposed approach.
翻译:时间点进程(TPP)是概率感化框架,它们以连续时间为本地的离散事件序列进行模型。一般而言,现实生活中的事件显示描述性信息,称为标记。标记的TPP模拟时间和事件标记加在一起具有实际相关性。根据过去的事件,标记的TPP旨在学习时间和下一个事件标志的联合分布。为了简单,有条件独立的TPP模型假定时间和标记是独立的事件历史。它们将有条件的时间和标记联合分布作为附带条件的时序。它们将有条件的时间和标记联合分布在个别有条件分布的产品中的因素化。在设计TPP模型时,这种结构性限制会损害被缠绕的时间和标记相互作用的预测性业绩。在这项工作中,我们以有条件的时间和标记的相互依存性为模型模型,以克服有条件独立模式和标志独立模式的局限性。我们根据当前事件标记和过去的事件来设置一个多变式的TPP模型。除了有条件联合分布的常规强度模型外,我们还从文献中吸取灵活的耐用强度TPP模型模型。拟议的TPP模型在附带时间和标志性上优于标准预测中的拟议的多级独立和依赖性模型。