Let $\Pi$ be a hereditary graph class. The problem of deletion to $\Pi$, takes as input a graph $G$ and asks for a minimum number (or a fixed integer $k$) of vertices to be deleted from $G$ so that the resulting graph belongs to $\Pi$. This is a well-studied problem in paradigms including approximation and parameterized complexity. Recently, the study of a natural extension of the problem was initiated where we are given a finite set of hereditary graph classes, and the goal is to determine whether $k$ vertices can be deleted from a given graph so that the connected components of the resulting graph belong to one of the given hereditary graph classes. The problem is shown to be FPT as long as the deletion problem to each of the given hereditary graph classes is fixed-parameter tractable, and the property of being in any of the graph classes is expressible in the counting monodic second order (CMSO) logic. While this was shown using some black box theorems, faster algorithms were shown when each of the hereditary graph classes has a finite forbidden set. In this paper, we do a deep dive on pairs of specific graph classes ($\Pi_1, \Pi_2$) in which we would like the connected components of the resulting graph to belong to, and design simpler and more efficient FPT algorithms. We design a general FPT algorithm and approximation algorithm for pairs of graph classes (possibly having infinite forbidden sets) satisfying certain conditions. These algorithms cover several pairs of popular graph classes. Our algorithm makes non-trivial use of the branching technique and as a black box, FPT algorithms for deletion to individual graph classes.


翻译:$\ Pi 是一个遗传图类。 将问题删除为 $\ Pi 的问题是 $\ Pi 。 问题在于将问题自然延伸到 $\ Pi 。 问题在于, 问题在于, 将问题推到 $\ Pi 上, 问题在于, 问题在于, 将问题推到 $\ Pi 上。 问题在于, 问题在于, 问题在于 将问题自然延伸到 $\ Pi 上。 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 包括近似和参数的复杂性 。 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题在于, 问题, 问题在于, 问题在于, 问题, 问题在于, 问题, 问题, 问题在于, 问题, 问题, 问题在于, 问题, 问题, 问题, 问题在于, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题, 问题

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员