(Sender-)Deniable encryption provides a very strong privacy guarantee: a sender who is coerced by an attacker into "opening" their ciphertext after-the-fact is able to generate "fake" local random choices that are consistent with any plaintext of their choice. The only known fully-efficient constructions of public-key deniable encryption rely on indistinguishability obfuscation (iO) (which currently can only be based on sub-exponential hardness assumptions). In this work, we study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm, but the ciphertext is classical. We propose two notions of deniable encryption in this setting. The first notion, called quantum deniability, parallels the classical one. We give a fully efficient construction satisfying this definition, assuming the quantum hardness of the Learning with Errors (LWE) problem. The second notion, unexplainability, starts from a new perspective on deniability, and leads to a natural common view of deniability in the classical and quantum settings. We give a construction which is secure in the random oracle model, assuming the quantum hardness of LWE. Notably, our construction satisfies a strong form of unexplainability which is impossible to achieve classically, thus highlighting a new quantum phenomenon that may be of independent interest.
翻译:(Sender-) 高级加密提供了非常有力的隐私保障: 受攻击者胁迫的发送者, 被迫“ 打开” 他们的加密事后的密码, 能够产生符合其选择的简单文本的“ 假” 本地随机选择。 唯一已知的完全高效的公用钥匙可删除加密结构依赖于不可分性模糊( iO) (iO) (目前只能基于亚高能度硬度假设 ) 。 在这项工作中, 我们研究( 发件人) 可识别的加密在加密程序是量子算法但密码是古典的环境下。 我们在此设置中提出了两种可解码的加密概念。 第一个概念, 叫做量子可忽略, 与经典的类似。 我们给出一个完全高效的工程, 假设学习与错误( LWE) 问题的量性硬度硬度硬度硬度( iO) 问题( iO) 。 第二个概念, 不易解性, 从新的角度开始, 并导致在经典和量度设置中形成一种不可解的自然常识的共性概念。 我们给一个不可分立的硬度的模型, 。