In constrained parameter estimation, the classical constrained Cramer-Rao bound (CCRB) and the recent Lehmann-unbiased CCRB (LU-CCRB) are lower bounds on the performance of mean-unbiased and Lehmann-unbiased estimators, respectively. Both the CCRB and the LU-CCRB require differentiability of the likelihood function, which can be a restrictive assumption. Additionally, these bounds are local bounds that are inappropriate for predicting the threshold phenomena of the constrained maximum likelihood (CML) estimator. The constrained Barankin-type bound (CBTB) is a nonlocal mean-squared-error (MSE) lower bound for constrained parameter estimation that does not require differentiability of the likelihood function. However, this bound requires a restrictive mean-unbiasedness condition in the constrained set. In this work, we propose the Lehmann-unbiased CBTB (LU-CBTB) on the weighted MSE. This bound does not require differentiability of the likelihood function and assumes Lehmann-unbiasedness, which is less restrictive than the CBTB mean-unbiasedness. We show that the LU-CBTB is tighter than or equal to the LU-CCRB and coincides with the CBTB for linear constraints. For nonlinear constraints the LU-CBTB and the CBTB are different and the LU-CBTB can be a lower bound on the WMSE of constrained estimators in cases, where the CBTB is not. In the simulations, we consider direction-of-arrival estimation of an unknown constant modulus discrete signal. In this case, the likelihood function is not differentiable and constrained Cramer-Rao-type bounds do not exist, while CBTBs exist. It is shown that the LU-CBTB better predicts the CML estimator performance than the CBTB, since the CML estimator is Lehmann-unbiased but not mean-unbiased.


翻译:在约束参数估计中,经典的约束Cramer-Rao界限(CCRB)和最近的Lehmann无偏CCRB(LU-CCRB)分别是均值无偏估计量和Lehmann无偏估计量性能的下限。CCRB和LU-CCRB都需要似然函数的可微性,这可能是一个限制性假设。此外,这些界限是不适合预测约束最大似然(CML)估计器的阈值现象的局部界限。约束Barankin型界限(CBTB)是用于约束参数估计的非局部均方误差(MSE)下限,不需要似然函数的可微性。但是,这个边界需要约束集合中限制性的均值无偏性。 在这项工作中,我们提出了基于加权MSE的无偏Lehmann CBTB(LU-CBTB)。该界限不需要似然函数的可微性,假设Lehmann无偏性,比CBTB的均值无偏性 less约束性。我们表明,LU-CBTB比LU-CCRB严格或相等,并在线性约束下与CBTB相同。对于非线性约束,LU-CBTB和CBTB不同,LU-CBTB可以是在CBTB不适用的情况下对约束估计器的WMSE的下限。在模拟中,我们考虑了未知常模离散信号的到达方向估计。在这种情况下,似然函数不可微,并且不存在约束Cramer-Rao型界限,而存在CBTB。结果显示,LU-CBTB比CBTB更好地预测CML估计器的性能,因为CML估计器是Lehmann无偏但不是均值无偏的。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年9月9日
专知会员服务
43+阅读 · 2021年7月1日
专知会员服务
23+阅读 · 2021年6月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
测试阶段模型自适应方法总结
PaperWeekly
0+阅读 · 2022年9月16日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
互信息论文笔记
CreateAMind
23+阅读 · 2018年8月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员