Infectious epidemics can be simulated by employing dynamical processes as interactions on network structures. Here, we introduce techniques from the Multi-Agent System (MAS) domain in order to account for individual level characterization of societal dynamics for the SARS-CoV-2 pandemic. We hypothesize that a MAS model which considers rich spatial demographics, hourly mobility data and daily contagion information from the metropolitan area of Toronto can explain significant emerging behavior. To investigate this hypothesis we designed, with our modeling framework of choice, GAMA, an accurate environment which can be tuned to reproduce mobility and healthcare data, in our case coming from TomTom's API and Toronto's Open Data. We observed that some interesting contagion phenomena are directly influenced by mobility restrictions and curfew policies. We conclude that while our model is able to reproduce non-trivial emerging properties, large-scale simulation are needed to further investigate the role of different parameters. Finally, providing such an end-to-end model can be critical for policy-makers to compare their outcomes with past strategies in order to devise better plans for future measures.


翻译:传染病可以通过动态过程作为网络结构的相互作用来模拟。在这里,我们从多机构系统(MAS)领域引进技术,以说明对SARS-COV-2大流行的社会动态的个别层面特征。我们假设一个考虑到多伦多大都市地区丰富的空间人口、小时流动数据和每日传染信息的MAS模型可以解释新出现的重大行为。为了调查我们设计的这一假设,我们用我们的模型框架GAMA(GAMA)——一个可以复制流动和保健数据的准确环境,在我们的例子中,来自TomTomTom的API和多伦多的开放数据。我们观察到一些有趣的传染现象直接受到流动限制和宵禁政策的影响。我们的结论是,虽然我们的模型能够复制非三重性新兴特性,但需要大规模模拟来进一步调查不同参数的作用。最后,提供这样一个端对端模型对于决策者将其结果与过去的战略进行比较,以便制定更好的未来措施计划至关重要。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员