Infectious epidemics can be simulated by employing dynamical processes as interactions on network structures. Here, we introduce techniques from the Multi-Agent System (MAS) domain in order to account for individual level characterization of societal dynamics for the SARS-CoV-2 pandemic. We hypothesize that a MAS model which considers rich spatial demographics, hourly mobility data and daily contagion information from the metropolitan area of Toronto can explain significant emerging behavior. To investigate this hypothesis we designed, with our modeling framework of choice, GAMA, an accurate environment which can be tuned to reproduce mobility and healthcare data, in our case coming from TomTom's API and Toronto's Open Data. We observed that some interesting contagion phenomena are directly influenced by mobility restrictions and curfew policies. We conclude that while our model is able to reproduce non-trivial emerging properties, large-scale simulation are needed to further investigate the role of different parameters. Finally, providing such an end-to-end model can be critical for policy-makers to compare their outcomes with past strategies in order to devise better plans for future measures.
翻译:传染病可以通过动态过程作为网络结构的相互作用来模拟。在这里,我们从多机构系统(MAS)领域引进技术,以说明对SARS-COV-2大流行的社会动态的个别层面特征。我们假设一个考虑到多伦多大都市地区丰富的空间人口、小时流动数据和每日传染信息的MAS模型可以解释新出现的重大行为。为了调查我们设计的这一假设,我们用我们的模型框架GAMA(GAMA)——一个可以复制流动和保健数据的准确环境,在我们的例子中,来自TomTomTom的API和多伦多的开放数据。我们观察到一些有趣的传染现象直接受到流动限制和宵禁政策的影响。我们的结论是,虽然我们的模型能够复制非三重性新兴特性,但需要大规模模拟来进一步调查不同参数的作用。最后,提供这样一个端对端模型对于决策者将其结果与过去的战略进行比较,以便制定更好的未来措施计划至关重要。