Preserving energy in households and office buildings is a significant challenge, mainly due to the recent shortage of energy resources, the uprising of the current environmental problems, and the global lack of utilizing energy-saving technologies. Not to mention, within some regions, COVID-19 social distancing measures have led to a temporary transfer of energy demand from commercial and urban centers to residential areas, causing an increased use and higher charges, and in turn, creating economic impacts on customers. Therefore, the marketplace could benefit from developing an internet of things (IoT) ecosystem that monitors energy consumption habits and promptly recommends action to facilitate energy efficiency. This paper aims to present the full integration of a proposed energy efficiency framework into the Home-Assistant platform using an edge-based architecture. End-users can visualize their consumption patterns as well as ambient environmental data using the Home-Assistant user interface. More notably, explainable energy-saving recommendations are delivered to end-users in the form of notifications via the mobile application to facilitate habit change. In this context, to the best of the authors' knowledge, this is the first attempt to develop and implement an energy-saving recommender system on edge devices. Thus, ensuring better privacy preservation since data are processed locally on the edge, without the need to transmit them to remote servers, as is the case with cloudlet platforms.


翻译:维护家庭和办公建筑的能源是一项重大挑战,主要原因是最近能源资源短缺,当前环境问题的爆发,以及全球缺乏节能技术。更不用提的是,在一些地区,COVID-19社会分化措施导致能源需求从商业和城市中心临时转移到住宅区,导致使用量增加和收费增加,进而对客户产生经济影响。因此,市场可受益于开发一个物联网(IoT)生态系统,以监测能源消费习惯并迅速建议促进能源效率的行动。本文件的目的是利用边缘建筑将拟议的节能框架充分纳入家庭助理平台。终端用户可以利用家庭助理用户界面来想象其消费模式以及环境数据。更明显的是,通过移动应用程序向终端用户提供可解释的节能建议,以便利改变习惯。在这方面,根据作者的最佳了解,这是首次尝试在边端设备上开发和实施节能建议系统。因此,终端用户可以利用家助理用户用户用户用户用户界面界面的界面来预测其消费模式以及周围环境数据。更为明显的是,通过移动应用程序向终端用户提供可解释的节能建议。根据作者的知识,这是首次尝试在边端设备上开发和实施节能建议系统。因此,确保将节能服务器上更好的保密数据在不经过处理后,以当地处理。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月27日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员