Given $n$ noisy samples with $p$ dimensions, where $n \ll p$, we show that the multi-step thresholding procedure based on the Lasso -- we call it the {\it Thresholded Lasso}, can accurately estimate a sparse vector $\beta \in {\mathbb R}^p$ in a linear model $Y = X \beta + \epsilon$, where $X_{n \times p}$ is a design matrix normalized to have column $\ell_2$-norm $\sqrt{n}$, and $\epsilon \sim N(0, \sigma^2 I_n)$. We show that under the restricted eigenvalue (RE) condition, it is possible to achieve the $\ell_2$ loss within a logarithmic factor of the ideal mean square error one would achieve with an $oracle$ while selecting a sufficiently sparse model -- hence achieving $sparse \ oracle \ inequalities$; the oracle would supply perfect information about which coordinates are non-zero and which are above the noise level. We also show for the Gauss-Dantzig selector (Cand\`{e}s-Tao 07), if $X$ obeys a uniform uncertainty principle, one will achieve the sparse oracle inequalities as above, while allowing at most $s_0$ irrelevant variables in the model in the worst case, where $s_0 \leq s$ is the smallest integer such that for $\lambda = \sqrt{2 \log p/n}$, $\sum_{i=1}^p \min(\beta_i^2, \lambda^2 \sigma^2) \leq s_0 \lambda^2 \sigma^2$. Our simulation results on the Thresholded Lasso match our theoretical analysis excellently.
翻译:给定 $n$ 个含噪声的 $p$ 维样本,其中 $n \\ll p$,我们证明基于Lasso的多步阈值化过程——我们称之为{\\it 阈值化Lasso},能够准确估计线性模型 $Y = X \\beta + \\epsilon$ 中的稀疏向量 $\\beta \\in {\\mathbb R}^p$,其中 $X_{n \\times p}$ 是经过列 $\\ell_2$ 范数归一化为 $\\sqrt{n}$ 的设计矩阵,且 $\\epsilon \\sim N(0, \\sigma^2 I_n)$。我们证明在受限特征值条件下,该方法能够以理想均方误差的对数因子内实现 $\\ell_2$ 损失,同时选择足够稀疏的模型——从而达成{\\it 稀疏Oracle不等式};Oracle将提供关于哪些坐标非零及哪些高于噪声水平的完美信息。我们还证明对于Gauss-Dantzig选择器,若 $X$ 满足一致不确定性原理,则同样可实现上述稀疏Oracle不等式,且在最坏情况下模型中最多允许 $s_0$ 个无关变量,其中 $s_0 \\leq s$ 是满足 $\\lambda = \\sqrt{2 \\log p/n}$ 时 $\\sum_{i=1}^p \\min(\\beta_i^2, \\lambda^2 \\sigma^2) \\leq s_0 \\lambda^2 \\sigma^2$ 的最小整数。我们对阈值化Lasso的仿真结果与理论分析高度吻合。