We study the phase reconstruction of signals $f$ belonging to complex Gaussian shift-invariant spaces $V^\infty(\varphi)$ from spectrogram measurements $|\mathcal{G}f(X)|$ where $\mathcal{G}$ is the Gabor transform and $X \subseteq \mathbb{R}^2$. An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on $|f|$ result in stability estimates in the situation where one aims to reconstruct $f$ on compact intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements [Grohs, P., Liehr, L., Injectivity of Gabor phase retrieval from lattice measurements, arXiv:2008.07238] we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a non-iterative, provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $V^\infty(\varphi)$, such as Paley-Wiener spaces.


翻译:我们研究的是来自光谱测量的属于复合高山变换空间的信号的分阶段重建(美元) 美元(瓦夫蒂) 美元(瓦夫蒂) 美元(瓦夫蒂) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(美元) 的信号是加博的变换和 美元(Gabor) 美元 (Gabor, P., Liehr, L.) 。 明确的重建公式将表明,通过扩大Rieszyzy 基础,从位于时频平面平线上的测量线上的测量中可以恢复这些信号。 此外,对美元(美元) 的连接假设导致一个稳定的估算结果, 由此得出的算算法提供了一种不固定的、 稳定和稳定的方法。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
人脸专集4 | 遮挡、光照等因素的人脸关键点检测
计算机视觉战队
29+阅读 · 2019年4月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡图灵智库】基于线段引导的直接视觉里程计算法
泡泡机器人SLAM
3+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
相关资讯
人脸专集4 | 遮挡、光照等因素的人脸关键点检测
计算机视觉战队
29+阅读 · 2019年4月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡图灵智库】基于线段引导的直接视觉里程计算法
泡泡机器人SLAM
3+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员