We consider designing reward schemes that incentivize agents to create high-quality content (e.g., videos, images, text, ideas). The problem is at the center of a real-world application where the goal is to optimize the overall quality of generated content on user-generated content platforms. We focus on anonymous independent reward schemes (AIRS) that only take the quality of an agent's content as input. We prove the general problem is NP-hard. If the cost function is convex, we show the optimal AIRS can be formulated as a convex optimization problem and propose an efficient algorithm to solve it. Next, we explore the optimal linear reward scheme and prove it has a 1/2-approximation ratio, and the ratio is tight. Lastly, we show the proportional scheme can be arbitrarily bad compared to AIRS.
翻译:我们考虑设计奖励计划,激励代理商创造高质量内容(例如视频、图像、文本、想法),问题是现实应用的核心,其目标在于优化用户生成内容平台上生成内容的整体质量。我们侧重于匿名独立奖励计划(AIRS),它只将代理商内容的质量作为投入。我们证明一般问题是NP硬性。如果成本功能是硬性,我们就会显示最佳的AIRS可以被设计成一个螺旋优化问题,并提出高效的算法来解决它。接下来,我们探索最佳线性奖励计划,证明它有一个1/2的匹配率,而且比率很紧。最后,我们显示比例计划可能与AIRS相比是任意的坏。