Multiverse analysis, a paradigm for statistical analysis that considers all combinations of reasonable analysis choices in parallel, promises to improve transparency and reproducibility. Although recent tools help analysts specify multiverse analyses, they remain difficult to use in practice. In this work, we identify debugging as a key barrier due to the latency from running analyses to detecting bugs and the scale of metadata processing needed to diagnose a bug. To address these challenges, we prototype a command-line interface tool, Multiverse Debugger, which helps diagnose bugs in the multiverse and propagate fixes. In a qualitative lab study (n=13), we use Multiverse Debugger as a probe to develop a model of debugging workflows and identify specific challenges, including difficulty in understanding the multiverse's composition. We conclude with design implications for future multiverse analysis authoring systems.
翻译:多元分析是统计分析的范例,它同时考虑所有合理分析选择的组合,有可能提高透明度和可复制性。虽然最近的工具帮助分析家指定了多角度分析,但在实践中仍然难以使用。在这项工作中,我们确定调试是关键障碍,因为从进行分析到检测错误和诊断错误所需的元数据处理规模存在延迟。为了应对这些挑战,我们制作了一个指令-线接口工具“多变量调试器”,帮助诊断多角度和传播修正中的错误。在定性实验室研究(n=13)中,我们使用多变量调试器作为探测器,开发调试工作流程的模式,找出具体挑战,包括难以理解多角度构成。我们最后对未来的多角度分析写作系统提出设计影响。