The use of pretrained embeddings has become widespread in modern e-commerce machine learning (ML) systems. In practice, however, we have encountered several key issues when using pretrained embedding in a real-world production system, many of which cannot be fully explained by current knowledge. Unfortunately, we find that there is a lack of a thorough understanding of how pre-trained embeddings work, especially their intrinsic properties and interactions with downstream tasks. Consequently, it becomes challenging to make interactive and scalable decisions regarding the use of pre-trained embeddings in practice. Our investigation leads to two significant discoveries about using pretrained embeddings in e-commerce applications. Firstly, we find that the design of the pretraining and downstream models, particularly how they encode and decode information via embedding vectors, can have a profound impact. Secondly, we establish a principled perspective of pre-trained embeddings via the lens of kernel analysis, which can be used to evaluate their predictability, interactively and scalably. These findings help to address the practical challenges we faced and offer valuable guidance for successful adoption of pretrained embeddings in real-world production. Our conclusions are backed by solid theoretical reasoning, benchmark experiments, as well as online testings.


翻译:使用预训练嵌入在现代电子商务机器学习系统中已经变得普遍。然而,在实践中,我们遇到了一些重要问题,使用预训练嵌入在实际生产系统中时,很多问题不能得到完全解释。不幸的是,我们发现当前对预训练嵌入的工作原理缺乏透彻的理解,特别是它们的内在特性和与下游任务的相互作用。因此,电子商务机器学习中应用预训练嵌入的决策变得难以交互和可扩展。我们的研究发现使用预训练嵌入在电子商务应用中有两个重大发现。首先,我们发现预训练模型以及下游模型的设计,特别是它们如何通过嵌入向量编码和解码信息,可以产生深远的影响。其次,我们通过核分析的方法确立了预训练嵌入的原则性视角,该视角可以用于交互式和可扩展的预测性评估。这些发现有助于解决我们遇到的实践挑战,为预训练嵌入在实际生产中的成功应用提供宝贵指导。我们的结论基于坚实的理论推理、基准实验和在线测试。

0
下载
关闭预览

相关内容

【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
19+阅读 · 2021年6月15日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员