Portfolio diversification is one of the most effective ways to minimize investment risk. Individuals and fund managers aim to create a portfolio of assets that not only have high returns but are also uncorrelated. This goal can be achieved by comparing the historical performance, fundamentals, predictions, news sentiment, and many other parameters that can affect the portfolio's value. One of the most well-known approaches to manage/optimize portfolios is the well-known mean-variance (Markowitz) portfolio. The algorithm's inputs are the expected returns and risks (volatility), and its output is the optimized weights for each asset in the target portfolio. Simplified unrealistic assumptions and constraints were used in its original version preventing its use in practical cases. One solution to improve its usability is by altering the parameters and constraints to match investment goals and requirements. This paper introduces PortFawn, an open-source Python library to create and backtest mean-variance portfolios. PortFawn provides simple-to-use APIs to create and evaluate mean-variance optimization algorithms using classical computing (real-valued asset weights) as well as quantum annealing computing (binary asset weights). This tool has many parameters to customize the target portfolios according to the investment goals. The paper introduces the background and limitations of the mean-variance portfolio optimization algorithm, its architecture, and a description of the functionalities of PortFawn. We also show how one can use this tool in practice using a simple investment scenario.


翻译:投资组合多样化是尽量减少投资风险的最有效方法之一。 个人和基金经理的目标是创建资产组合,不仅具有高回报,而且与资产组合无关。 这一目标可以通过比较历史业绩、基础、预测、新闻情绪和影响投资组合价值的许多其他参数来实现。 管理/优化投资组合的最著名方法之一是众所周知的中差(马尔科维茨)投资组合。 算法的投入是预期收益和风险(波动),其产出是目标组合中每项资产的最佳加权数。 最初版本使用了简化不现实的假设和制约因素,防止其用于实际案例。 改进其可用性的一个解决办法是改变参数和制约因素,以匹配投资目标和要求。 本文介绍了PortFawn,一个开放源Python图书馆,以创建和减少中差差价组合。 PortFawn提供简单到使用的APIPI, 其产出是利用古典计算(实时F)资产组合的优化加权数。 将这一资产组合的内差值和内限值作为资产成本的量化工具。我们用一个定制工具来计算。

0
下载
关闭预览

相关内容

ACM SIGACCESS Conference on Computers and Accessibility是为残疾人和老年人提供与计算机相关的设计、评估、使用和教育研究的首要论坛。我们欢迎提交原始的高质量的有关计算和可访问性的主题。今年,ASSETS首次将其范围扩大到包括关于计算机无障碍教育相关主题的原创高质量研究。官网链接:http://assets19.sigaccess.org/
专知会员服务
70+阅读 · 2021年7月1日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员