Quantum computing is evolving so quickly that forces us to revisit, rewrite, and update the basis of the theory. Basic Quantum Algorithms revisits the first quantum algorithms. It started in 1995 with Deutsch trying to evaluate a function at two domain points simultaneously. Then, Deutsch and Jozsa created in 1992 a quantum algorithm that determines whether a Boolean function is constant or balanced. In the next year, Bernstein and Vazirani realized that the same algorithm can be used to find a specific Boolean function in the set of linear Boolean functions. In 1994, Simon presented a new quantum algorithm that determines whether a function is one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. In the same year, Shor created two new quantum algorithms for factoring integers and calculating discrete logarithms, threatening the cryptography methods widely used nowadays. In 1995, Kitaev described an alternative version for Shor's algorithms that proved useful in many other applications. In the following year, Grover created a quantum search algorithm quadratically faster than its classical counterpart. In this work, all those remarkable algorithms are described in detail with a focus on the circuit model.
翻译:量子计算正在迅速演变,迫使我们重新审视、重写和更新理论基础。 基本量子算法重新审视了第一个量子算法。 它始于1995年, Deutsch 试图同时在两个域点同时评估一个函数。 然后, Deutsch 和 Jozsa 在1992年创建了一个量子算法, 确定布林函数是否不变或平衡。 在下一年, Bernstein 和 Vazirani 发现同一算法可用于在线性布林函数集中找到一个特定的布尔函数。 1994年, Simon 展示了一个新的量子算法, 确定一个函数是一对一还是二对一, 比同一问题的任何典型算法都快。 同年, Shor 创建了两个新的量子算法, 用于保理整数和计算离心逻辑, 威胁着当今广泛使用的加密方法。 1995年, Kitaev 描述了一个在许多其他应用中证明有用的Shor算法的替代版本。 在下一年, Grover 创建了一种量子搜索方法的模型, 其精确度分析分析分析法比其速度都快。