Due to the limit of mesh density, the improvement of the spatial precision of numerical computation always leads to a decrease in computing efficiency. Aiming at this inability of numerical computation, we propose a novel method for boosting the mesh density in numerical computation within the 2D domain. Based on the low mesh-density stress field in the 2D plane strain problem computed by the finite element method, this method utilizes a deep neural network named SuperMeshingNet to learn the non-linear mapping from low mesh-density to high mesh-density stress field, and realizes the improvement of numerical computation accuracy and efficiency simultaneously. We adopt residual dense blocks to our mesh-density boost model called SuperMeshingNet for extracting abundant local features and enhancing the prediction capacity of the model. Experimental results show that the SuperMeshingNet proposed in this work can effectively boost the spatial resolution of the stress field under the multiple scaling factors: 2X, 4X, 8X. Compared to the results of the finite element method, the predicted stress field error of SuperMeshingNet is only 0.54%, which is within the acceptable range of stress field estimation, and the SuperMeshingNet predicts the maximum stress value also without significant accuracy loss. We publicly share our work with full detail of implementation at https://github.com/zhenguonie/2021_SuperMeshing_2D_Plane_Strain.
翻译:由于网状密度的限值, 改进数字计算的空间精确度总会导致计算效率下降。 以无法进行数字计算为目的, 我们提出一种新的方法, 在 2D 域内的数字计算中提高网状密度。 基于以有限元素法计算 2D 平面压力问题的低网状密度压力字段, 这种方法利用名为 SuperMeshingNet 的深神经网络学习非线性绘图, 从低网状密度到高网状密度压力字段, 并同时实现数字计算准确性和效率的改进。 我们采用称为 SuperMeshingNet 的网状密度加速模型, 以提取丰富的本地特性并增强模型的预测能力。 实验结果表明, 这项工作中提议的超级网状网状能够有效促进压力域的空间解析, 多重缩放因子: 2X, 4X, 8X。 与限定要素方法的结果相比, SeperMeshueNet 的预期压力字段字段误差为0.54 %, 而SeurgeMeblesh- meshesheshest 详细估测算, 在可接受的外地重大压力范围内, 。