Private computation in a distributed storage system (DSS) is a generalization of the private information retrieval (PIR) problem. In such setting a user wishes to compute a function of $f$ messages stored in $n$ noncolluding coded databases, i.e., databases storing data encoded with an $[n,k]$ linear storage code, while revealing no information about the desired function to the databases. We consider the problem of private polynomial computation (PPC). In PPC, a user wishes to compute a multivariate polynomial of degree at most $g$ over $f$ variables (or messages) stored in multiple databases. First, we consider the private computation of polynomials of degree $g=1$, i.e., private linear computation (PLC) for coded databases. In PLC, a user wishes to compute a linear combination over the $f$ messages while keeping the coefficients of the desired linear combination hidden from the database. For a linearly encoded DSS, we present a capacity-achieving PLC scheme and show that the PLC capacity, which is the ratio of the desired amount of information and the total amount of downloaded information, matches the maximum distance separable coded capacity of PIR for a large class of linear storage codes. Then, we consider private computation of higher degree polynomials, i.e., $g>1$. For this setup, we construct two novel PPC schemes. In the first scheme, we consider Reed-Solomon coded databases with Lagrange encoding, which leverages ideas from recently proposed star-product PIR and Lagrange coded computation. The second scheme considers the special case of coded databases with systematic Lagrange encoding. Both schemes yield improved rates, while asymptotically, as $f\rightarrow \infty$, the systematic scheme gives a significantly better computation retrieval rate compared to all known schemes up to some storage code rate that depends on the maximum degree of the candidate polynomials.
翻译:在分布式存储系统( DSS) 私自计算是私人信息检索( PIR) 问题的一般化。 在这样的设置中, 用户希望计算存储在$n美元的非编码数据库中的信息的函数, 即存储以$$[n, k]$(线性存储代码) 编码的数据的数据库, 而没有向数据库披露关于想要的函数的信息。 我们考虑私人多式计算( PPC) 的问题。 在 PPC 中, 用户希望计算一个多变量的多变量, 最多超过$$( g$) 的变量( 或消息) 。 在这样的设置中, 以美元( 美元) 或美元存储在多个数据库中存储一个 $( $) 的多变量( 美元) 。 首先, 我们考虑对 美元( 美元) 更高( 美元) 的变量( 或电文函式) 1 的多位数( PLC) 存储器的私制序算算算算算算算法, 将所有 的线性组合归为Laf 。 。 以线性编码的系数 。 。 以线性化的计算, 我们提出一个容量( ) 数字化的智化地( iLC) ) 预算算算算算算算算算算算算的 。