Current generative knowledge graph construction approaches usually fail to capture structural knowledge by simply flattening natural language into serialized texts or a specification language. However, large generative language model trained on structured data such as code has demonstrated impressive capability in understanding natural language for structural prediction and reasoning tasks. Intuitively, we address the task of generative knowledge graph construction with code language model: given a code-format natural language input, the target is to generate triples which can be represented as code completion tasks. Specifically, we develop schema-aware prompts that effectively utilize the semantic structure within the knowledge graph. As code inherently possesses structure, such as class and function definitions, it serves as a useful model for prior semantic structural knowledge. Furthermore, we employ a rationale-enhanced generation method to boost the performance. Rationales provide intermediate steps, thereby improving knowledge extraction abilities. Experimental results indicate that the proposed approach can obtain better performance on benchmark datasets compared with baselines. Code and datasets are available in https://github.com/zjunlp/DeepKE/tree/main/example/llm.


翻译:目前的生成式知识图谱构建方法通常无法将结构化知识捕捉到序列化文本或规范语言之中,因此常常难以理解生成的知识图谱。然而,针对结构预测和推理任务进行训练的大型代码生成语言模型在理解自然语言方面表现出了出色的能力。因此,我们提出一种使用代码语言模型的方法来实现生成式知识图谱构建的任务:给定一个自然语言的代码格式输入,目标是生成可以表示为代码补全任务的三元组。具体而言,我们开发了能够有效利用知识图谱中语义结构的模式感知提示。由于代码本质上有结构,例如类和函数定义,因此它作为先前的语义结构知识模型非常有用。此外,我们采用了一种提高性能的理由增强生成方法。理由提供中间步骤,从而提高了知识提取能力。实验结果表明,与基线相比,所提出的方法在基准数据集上可以获得更好的性能。代码和数据集可在https://github.com/zjunlp/DeepKE/tree/main/example/llm 中获取。

0
下载
关闭预览

相关内容

EMNLP 2021 | 预训练跨语言模型中的大词表构建及使用
专知会员服务
21+阅读 · 2022年1月5日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
EMNLP 2022 | 基于课程学习的生成式实体分类范式
PaperWeekly
1+阅读 · 2022年11月23日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
15+阅读 · 2019年9月11日
VIP会员
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员