The fundamental problem in much of physics and quantum chemistry is to optimize a low-degree polynomial in certain anticommuting variables. Being a quantum mechanical problem, in many cases we do not know an efficient classical witness to the optimum, or even to an approximation of the optimum. One prominent exception is when the optimum is described by a so-called "Gaussian state", also called a free fermion state. In this work we are interested in the complexity of this optimization problem when no good Gaussian state exists. Our primary testbed is the Sachdev--Ye--Kitaev (SYK) model of random degree-$q$ polynomials, a model of great current interest in condensed matter physics and string theory, and one which has remarkable properties from a computational complexity standpoint. Among other results, we give an efficient classical certification algorithm for upper-bounding the largest eigenvalue in the $q=4$ SYK model, and an efficient quantum certification algorithm for lower-bounding this largest eigenvalue; both algorithms achieve constant-factor approximations with high probability.
翻译:许多物理和量子化学的根本问题是优化某些反腐化变体中的低度多元度问题。 量子机械问题, 在许多情况下, 我们不了解一个高效的典型证人, 来证明最佳, 甚至接近最佳。 一个显著的例外是, 最佳性被所谓的“ 古西安州 ” 所描述, 也称为自由发酵状态。 在这项工作中, 当没有好的高西亚州存在时, 我们感兴趣的是这个优化问题的复杂性。 我们的主要测试台是Sachdev- Ye- Kitaev (SYK) 随机度- Q$ 多元值( SYK) 模型, 这是一种当前对浓缩物质物理学和弦理论非常感兴趣的模型, 以及一个从计算复杂角度具有显著特性的模型。 除其他结果外, 我们给出了一种高效的典型的典型认证算法, 用于对美元=4美元SYYK模型中最大的顶端的顶端天值进行认证, 以及对于这一最高值的低度量值的有效定量算法; 两种算法都实现了高概率的恒定。