In decision modelling with time to event data, parametric models are often used to extrapolate the survivor function. One such model is the piecewise exponential model whereby the hazard function is partitioned into segments, with the hazard constant within the segment and independent between segments and the boundaries of these segments are known as change-points. We present an approach for determining the location and number of change-points in piecewise exponential models. Inference is performed in a Bayesian framework using Markov Chain Monte Carlo (MCMC) where the model parameters can be integrated out of the model and the number of change-points can be sampled as part of the MCMC scheme. We can estimate both the uncertainty in the change-point locations and hazards for a given change-point model and obtain a probabilistic interpretation for the number of change-points. We evaluate model performance to determine changepoint numbers and locations in a simulation study and show the utility of the method using two data sets for time to event data. In a dataset of Glioblastoma patients we use the piecewise exponential model to describe the general trends in the hazard function. In a data set of heart transplant patients, we show the piecewise exponential model produces the best statistical fit and extrapolation amongst other standard parametric models. Piecewise exponential models may be useful for survival extrapolation if a long-term constant hazard trend is clinically plausible. A key advantage of this method is that the number and change-point locations are automatically estimated rather than specified by the analyst.


翻译:在时间到事件数据的决策建模中,常使用参数模型来推断幸存者的功能。这种模型之一是将危险功能分成成段的片断指数式模型,其中部分内的危险常数和段间独立的危险常数,这些部分的边界被称为变化点。我们提出了一个方法,用以确定在片断指数模型中的变化点的位置和数目。在使用Markov 链链 Monte Carlo(MCMC)的巴耶西亚框架中进行推论,模型参数可以从模型中整合出来,而变化点的数目可以作为MCMC计划的一部分进行自动抽样。我们可以估计变化点位置的不确定性和特定变化点之间的危险,这些部分的边界被称为变化点的边界。我们在模拟研究中评估模型性能以确定变化点和地点的位置,并用两套数据显示方法在时间上对事件数据的效用。在Gliobastoma患者的数据集中,我们使用石化指数指数化指数模型来描述危险功能中的一般趋势。在一个变化点模型中,我们用最精确的指数性指数性模型来评估其他的指数性模型,我们用其他的指数性模型来分析。我们用最精确的指数性模型来分析其他的指数性模型来分析。我们用一个指数性模型来计算。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月11日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月12日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员