For a generalization of Johnstone's spiked model, a covariance matrix with eigenvalues all one but $M$ of them, the number of features $N$ comparable to the number of samples $n: N=N(n), M=M(n), \gamma^{-1} \leq \frac{N}{n} \leq \gamma$ where $\gamma \in (0,\infty),$ we obtain consistency rates in the form of CLTs for separated spikes tending to infinity fast enough whenever $M$ grows slightly slower than $n: \lim_{n \to \infty}{\frac{\sqrt{\log{n}}}{\log{\frac{n}{M(n)}}}}=0.$ Our results fill a gap in the existing literature in which the largest range covered for the number of spikes has been $o(n^{1/6})$ and reveal a certain degree of flexibility for the centering in these CLTs inasmuch as it can be empirical, deterministic, or a sum of both. Furthermore, we derive consistency rates of their corresponding empirical eigenvectors to their true counterparts, which turn out to depend on the relative growth of these eigenvalues.
翻译:对于约翰斯通的悬浮模型的概括性而言,一个含有除美元外所有一元价值外所有一元价值的同源矩阵,其特性数量与样品数量相当:N=N(n),M=M(n),\gamma ⁇ -1}\leq\frac{N ⁇ n}\leq\gama$\gama$(0.,infty),美元我们以CLT的形式获得一致性率,以CLT形式处理不同峰值的峰值,这种峰值趋于无限,只要美元增长略慢于$:\lim ⁇ n\to\ infty-hurc=sqrt=mqrt{sqrt}rg{m{m=m(n),m\gamma}-1}\leq\ gamma$。 我们的结果填补了现有文献中的空白,其中峰值的最大范围是$o(n ⁇ 1/6},并显示出这些峰值中以CLT为核心的一定程度的灵活性,只要其中心值增长速度小于$:\limbiscialcial-sual excialtial excialeval to squal subilate squal subilvecialtialtialtime sues。