This paper studies circular designs for interference models, where a treatment assigned to a plot also affects its neighboring plots within a block. For the purpose of estimating total effects, the circular neighbor balanced design was shown to be universally optimal among designs which do not allow treatments to be neighbors of themselves. Our study shows that self-neighboring block sequences are actually the main ingredient for an optimal design. Here, we adopt the approximate design framework and study optimal designs in the whole design space. Our approach is flexible enough to accommodate all possible design parameters, that is the block size and the number of blocks and treatments. This approach can be broken down into two main steps: the identification of the minimal supporting set of block sequences and the optimality condition built on it. The former is critical for reducing the computational time from almost infinity to seconds. Meanwhile, the task of finding the minimal set is normally achieved through numerical methods, which can only handle small block sizes. Our approach is of a hybrid nature in order to deal with all design sizes. When block size is not large, we provide explicit expressions of the minimal set instead of relying on numerical methods. For larger block sizes when a typical numerical method would fail, we theoretically derived a reasonable size intermediate set of sequences, from which the minimal set can be quickly derived through a customized algorithm. Taking it further, the optimality conditions allow us to obtain both symmetric and asymmetric designs. Lastly, we also investigate the trade-off issue between circular and noncircular designs, and provide guidelines on the choices.


翻译:本文研究干扰模型的环形设计, 由一块地块分配的处理也影响到其周围的地块。 为了估计总效果, 环形邻居平衡设计显示, 环形邻居平衡设计在无法让治疗成为自己邻居的设计中具有普遍的最佳性。 我们的研究显示, 自我邻接区块序列实际上是最佳设计的主要成份。 在这里, 我们采用大致设计框架和研究整个设计空间的最佳设计。 我们的方法足够灵活, 足以适应所有可能的设计参数, 即区块大小以及区块和处理的数量。 这种方法可以分为两个主要步骤: 确定最低限度的区块序列支持和所建的最佳条件。 前者对于将计算时间从几乎不精确到几秒都不允许自己邻居。 与此同时, 寻找最起码的区块序列的任务通常通过数字方法完成, 只能处理小块面积。 我们的方法具有混合性质, 以便处理所有设计大小。 当块大小不大时, 我们提供最起码的设置, 而不是依靠数字方法。 对于更小的区块大小, 我们提供最起码的一组, 和最起码的定的底序, 我们从一个中间的模型, 我们从一个最接近的模型到一个最接近的序的顺序,, 我们从一个最短的顺序, 我们从一个最短的顺序, 我们从一个最短的开始, 我们从一个最短的顺序, 从一个最短的顺序到一个最短的顺序, 开始, 我们从一个最短的, 进行一个最短的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员