This paper studies circular designs for interference models, where a treatment assigned to a plot also affects its neighboring plots within a block. For the purpose of estimating total effects, the circular neighbor balanced design was shown to be universally optimal among designs which do not allow treatments to be neighbors of themselves. Our study shows that self-neighboring block sequences are actually the main ingredient for an optimal design. Here, we adopt the approximate design framework and study optimal designs in the whole design space. Our approach is flexible enough to accommodate all possible design parameters, that is the block size and the number of blocks and treatments. This approach can be broken down into two main steps: the identification of the minimal supporting set of block sequences and the optimality condition built on it. The former is critical for reducing the computational time from almost infinity to seconds. Meanwhile, the task of finding the minimal set is normally achieved through numerical methods, which can only handle small block sizes. Our approach is of a hybrid nature in order to deal with all design sizes. When block size is not large, we provide explicit expressions of the minimal set instead of relying on numerical methods. For larger block sizes when a typical numerical method would fail, we theoretically derived a reasonable size intermediate set of sequences, from which the minimal set can be quickly derived through a customized algorithm. Taking it further, the optimality conditions allow us to obtain both symmetric and asymmetric designs. Lastly, we also investigate the trade-off issue between circular and noncircular designs, and provide guidelines on the choices.
翻译:本文研究干扰模型的环形设计, 由一块地块分配的处理也影响到其周围的地块。 为了估计总效果, 环形邻居平衡设计显示, 环形邻居平衡设计在无法让治疗成为自己邻居的设计中具有普遍的最佳性。 我们的研究显示, 自我邻接区块序列实际上是最佳设计的主要成份。 在这里, 我们采用大致设计框架和研究整个设计空间的最佳设计。 我们的方法足够灵活, 足以适应所有可能的设计参数, 即区块大小以及区块和处理的数量。 这种方法可以分为两个主要步骤: 确定最低限度的区块序列支持和所建的最佳条件。 前者对于将计算时间从几乎不精确到几秒都不允许自己邻居。 与此同时, 寻找最起码的区块序列的任务通常通过数字方法完成, 只能处理小块面积。 我们的方法具有混合性质, 以便处理所有设计大小。 当块大小不大时, 我们提供最起码的设置, 而不是依靠数字方法。 对于更小的区块大小, 我们提供最起码的一组, 和最起码的定的底序, 我们从一个中间的模型, 我们从一个最接近的模型到一个最接近的序的顺序,, 我们从一个最短的顺序, 我们从一个最短的顺序, 我们从一个最短的开始, 我们从一个最短的顺序, 从一个最短的顺序到一个最短的顺序, 开始, 我们从一个最短的, 进行一个最短的。