Effective latent representations need to capture abstract features of the externalworld. We hypothesise that the necessity for a group of agents to reconcile theirsubjective interpretations of a shared environment state is an essential factor in-fluencing this property. To test this hypothesis, we propose an architecture whereindividual agents in a population receive different observations of the same under-lying state and learn latent representations that they communicate to each other. Wehighlight a fundamental link between emergent communication and representationlearning: the role of language as a cognitive tool and the opportunities conferredby subjectivity, an inherent property of most multi-agent systems. We present aminimal architecture comprised of a population of autoencoders, where we defineloss functions, capturing different aspects of effective communication, and examinetheir effect on the learned representations. We show that our proposed architectureallows the emergence of aligned representations. The subjectivity introduced bypresenting agents with distinct perspectives of the environment state contributes tolearning abstract representations that outperform those learned by both a single au-toencoder and a population of autoencoders, presented with identical perspectives.Altogether, our results demonstrate how communication from subjective perspec-tives can lead to the acquisition of more abstract representations in multi-agentsystems, opening promising perspectives for future research at the intersection ofrepresentation learning and emergent communication.


翻译:我们假设,一组代理人必须调和他们对共同环境状态的主观解释,这是影响这一属性的一个基本要素。为了检验这一假设,我们提议一个结构,让人口中的个人代理人得到与同一下层国家不同的观察,并学习他们相互沟通的潜在表现。我们强调新兴交流和代表学习之间的根本联系:语言作为认知工具的作用,以及由主观性赋予的机会,大多数多试剂系统的固有属性。我们提出了由自动化者组成的极小结构,我们界定了损失功能,捕捉了有效交流的不同方面,并审查了其对所了解的表述的影响。我们表明,我们提议的结构使一个居民中的个别代理人得到与同一下层国家不同的观察,并学习了他们相互沟通的潜在表现。我们强调,提出环境状况不同视角的代理人所介绍的主体性有助于学习抽象的表述,这些表述超越了单一的图解和自动化者的固有属性。我们的结果还表明,从主观的透视点和跨层分析中进行的交流,可以导致今后在多层研究中进行更有希望的交流。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
3+阅读 · 2021年11月5日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员