Gram-based and patch-based approaches are two important research lines of style transfer. Recent diversified Gram-based methods have been able to produce multiple and diverse stylized outputs for the same content and style images. However, as another widespread research interest, the diversity of patch-based methods remains challenging due to the stereotyped style swapping process based on nearest patch matching. To resolve this dilemma, in this paper, we dive into the crux of existing patch-based methods and propose a universal and efficient module, termed DivSwapper, for diversified patch-based arbitrary style transfer. The key insight is to use an essential intuition that neural patches with higher activation values could contribute more to diversity. Our DivSwapper is plug-and-play and can be easily integrated into existing patch-based and Gram-based methods to generate diverse results for arbitrary styles. We conduct theoretical analyses and extensive experiments to demonstrate the effectiveness of our method, and compared with state-of-the-art algorithms, it shows superiority in diversity, quality, and efficiency.


翻译:以格拉姆为基础的和以补丁为基础的方法是风格传输的两个重要研究线。最近,以格拉姆为基础的多种方法能够为相同的内容和风格图像产生多种和多样化的系统化产出。然而,作为另一个广泛的研究兴趣,由于基于近距离补丁的定型风格互换过程,基于补丁方法的多样性仍然具有挑战性。为了解决这一难题,我们在本文中将我们潜入现有的基于补丁的方法的柱子中,并提议一个通用和高效的模块,称为DivSwapper,用于多样化的基于补丁的任意风格的转让。关键洞察力是使用一种基本直觉,即具有更高激活值的神经质补丁能够对多样性做出更大的贡献。我们的DivSwapper是插接和功能,可以很容易地融入现有的基于格拉姆的、基于补丁方法,为任意风格产生不同的结果。我们进行理论分析和广泛的实验,以证明我们的方法的有效性,并与最先进的算法相比,它显示了多样性、质量和效率的优越性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月3日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员