Every automaton can be decomposed into a cascade of basic prime automata. This is the Prime Decomposition Theorem by Krohn and Rhodes. Guided by this theory, we propose automata cascades as a structured, modular, way to describe automata as complex systems made of many components, each implementing a specific functionality. Any automaton can serve as a component; using specific components allows for a fine-grained control of the expressivity of the resulting class of automata; using prime automata as components implies specific expressivity guarantees. Moreover, specifying automata as cascades allows for describing the sample complexity of automata in terms of their components. We show that the sample complexity is linear in the number of components and the maximum complexity of a single component, modulo logarithmic factors. This opens to the possibility of learning automata representing large dynamical systems consisting of many parts interacting with each other. It is in sharp contrast with the established understanding of the sample complexity of automata, described in terms of the overall number of states and input letters, which implies that it is only possible to learn automata where the number of states is linear in the amount of data available. Instead our results show that one can learn automata with a number of states that is exponential in the amount of data available.


翻译:每一个自动图都可被分解成一个基础质质自制自制自动数据级联 。 这是由 Krohn 和 Rhodes 制作的初始分解理论 。 遵循这一理论, 我们建议将自动数据级联作为一个结构化的模块, 将自动数据级联描述为由多个组件组成的复杂系统, 每个功能都具有特定的功能。 任何自动图可以作为一个组件; 使用特定组件可以细微地控制由此产生的自动数据级的表达性; 使用原始自制数据作为组件, 意味着具体的表达性保证。 此外, 指定自制数据, 因为级联允许用其组件的组件来描述自动数据样本的复杂性。 我们显示, 样本的复杂性是线性的, 是一个组件的数量和单个组件的最大复杂性, modullo对数因素。 这打开了学习由多个部分相互作用组成的大型动态系统的自动数据的可能性。 这与对自动图的样本复杂性的既定理解形成鲜明对比, 即根据状态和输入字母的总体数量来描述。 这意味着, 我们只能通过直线性数据来学习一个数据的数量。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员