This paper proposes a novel lightweight thumbnail container-based summarization (LTC-SUM) framework for full feature-length videos. This framework generates a personalized keyshot summary for concurrent users by using the computational resource of the end-user device. State-of-the-art methods that acquire and process entire video data to generate video summaries are highly computationally intensive. In this regard, the proposed LTC-SUM method uses lightweight thumbnails to handle the complex process of detecting events. This significantly reduces computational complexity and improves communication and storage efficiency by resolving computational and privacy bottlenecks in resource-constrained end-user devices. These improvements were achieved by designing a lightweight 2D CNN model to extract features from thumbnails, which helped select and retrieve only a handful of specific segments. Extensive quantitative experiments on a set of full 18 feature-length videos (approximately 32.9 h in duration) showed that the proposed method is significantly computationally efficient than state-of-the-art methods on the same end-user device configurations. Joint qualitative assessments of the results of 56 participants showed that participants gave higher ratings to the summaries generated using the proposed method. To the best of our knowledge, this is the first attempt in designing a fully client-driven personalized keyshot video summarization framework using thumbnail containers for feature-length videos.


翻译:本文建议为全长长视频提供新型的光量缩略图集装箱缩略图缩略图框架(LTC-SUM),这一框架通过使用终端用户装置的计算资源,为同时使用的用户制作了个性化键盘摘要。获取和处理全部视频数据以生成视频摘要的最先进方法在计算上非常密集。在这方面,拟议的LTC-SUM方法使用轻量级缩略图处理复杂的探测事件的过程。这大大降低了计算复杂性,并通过解决资源限制的终端用户装置的计算和隐私瓶颈,提高了通信和储存效率。这些改进是通过设计一个轻度2DCNN模型,从缩略图中提取特征,该模型只帮助选择和检索几个特定的部分。一套全18个长视频(持续时间约为32.9小时)的广泛量化实验表明,拟议的方法在计算上比同一终端用户装置配置的最先进方法效率很高。对56名与会者的联合定性评估显示,在使用拟议的关键缩略图格式设计中,首次对所制作的个人缩略图进行了更高评级。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Graph representation learning for street networks
Arxiv
0+阅读 · 2022年11月9日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员