It is common to use networks to encode the architecture of interactions between entities in complex systems in applications in the physical, biological, social, and information sciences. To study the large-scale behavior of complex systems, it is useful to study mesoscale structures in networks as building blocks that influence such behavior. We present a new approach for describing low-rank mesoscale structure in networks, and we illustrate our approach using several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks. We find that these networks possess a relatively small number of `latent motifs' that together can successfully approximate most subgraphs of a network at a fixed mesoscale. We use an algorithm that we call `network dictionary learning' (NDL), which combines a network-sampling method and nonnegative matrix factorization, to learn the latent motifs of a given network. The ability to encode a network using a set of latent motifs has a wide variety of applications to network-analysis tasks, such as comparison, denoising, and edge inference. Additionally, using our new network denoising and reconstruction (NDR) algorithm, we demonstrate how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted networks.
翻译:在物理、生物、社会及信息科学的应用中,通常使用网络来规范复杂系统实体之间互动结构的架构; 为研究复杂系统的大规模行为,有必要研究网络中的中间结构,作为影响这种行为的构件。 我们提出了一个描述网络中低端中尺度结构的新办法,我们用几种合成网络模型和经验的友谊、协作和蛋白质-蛋白质互动(PPI)网络来说明我们的方法。我们发现,这些网络拥有相对较少的“相对模式”,能够共同成功地接近固定中间尺度网络的大多数子集。我们使用的算法称为“网络字典学习”(NDL),我们称之为“网络字典学习”(NDL),它将网络中低端中尺度结构描述为网络中的低级中尺度结构,我们用几种合成网络模型以及某种潜在的友谊、协作和蛋白质-蛋白质互动(PPI)网络来说明我们的方法。我们利用一套潜在的模型来对网络进行编码,例如比较、解析和边缘的网络进行广泛应用,例如比较、分辨和分辨。 此外,我们使用一种新的网络来直接展示一个腐败的网络,我们如何从一个腐败的网络进行重建。