Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.
翻译:神经图像压缩利用深层神经网络,在速度扭曲性能方面超越传统图像编码。 但是,所产生的模型也非常重,在计算上要求很高,而且通常以单一速度优化,限制了其实际使用。我们以实际图像压缩为重点,提出了可压缩的微缩压缩自动调整器(SlimCAEs),根据不同的能力,对比例(R)和扭曲(D)进行联合优化。一旦经过培训,编码器和分解器可以在不同能力下执行,导致不同的比例和复杂性。我们表明,成功实施SlimCAEs需要适合具体能力的RD取舍。我们的实验显示,SlimCAEs是高度灵活的模型,能够提供极好的率扭曲性能、可变率以及记忆、计算成本和拉长的动态调整,从而满足了实际图像压缩的主要要求。