This paper presents an explicit construction of a class of optimal-access, minimum storage regenerating (MSR) codes, for small values of the number $d$ of helper nodes. The construction is valid for any parameter set $(n,k,d)$ with $d \in \{k+1, k+2, k+3\}$ and employs a finite field $\mathbb{F}_q$ of size $q=O(n)$. We will refer to the constructed codes as Small-d MSR codes. The sub-packetization level $\alpha$ is given by $\alpha = s^{{\lceil\frac{n}{s}\rceil}}$, where $s=d-k+1$. By an earlier result on the sub-packetization level for optimal-access MSR codes, this is the smallest value possible.
翻译:本文为帮助节点数的小额值,明确构建了一类最佳访问、最小储存再生成(MSR)代码。该构建对设定为$(n,k,d)美元且以$=k+1, k+2, k+3$为单位的任何参数都有效,并使用一定的字段$\mathbb{F ⁇ q$=q=O(n)$。我们将将构建的代码称为Small-d MSR代码。次包装水平$=alpha$由$\pha=s=zlceil\frac{n ⁇ särcele}$(美元=d-k+1美元)给出。根据关于优化访问MSR代码分包装水平的早期结果,这是可能达到的最低值。