We present a class of new explicit and stable numerical algorithms to solve the spatially discretized linear heat or diffusion equation. After discretizing the space and the time variables like conventional finite difference methods, we do not approximate the time derivatives by finite differences, but use constant neighbor and linear neighbour approximations to decouple the ordinary differential equations and solve them analytically. During this process, the timestep-size appears not in polynomial, but in exponential form with negative exponents, which guarantees stability. We compare the performance of the new methods with analytical and numerical solutions. According to our results, the methods are first and second order in time and can be much faster than the commonly used explicit or implicit methods, especially in the case of extremely large stiff systems.
翻译:我们提出了一系列新的明确和稳定的数字算法,以解决空间离散线性热或扩散方程式。在将空间和时间变量(如常规有限差异方法)分解后,我们并不以有限差异来估计时间衍生物,而是使用常数邻里和线性邻里近似法来拆分普通差异方程式并分析解析它们。在此过程中,时间步骤大小似乎不是以多元形显示,而是以指数形式显示,以负指数形式显示,从而保证稳定性。我们将新方法的性能与分析和数字解决方案进行比较。根据我们的结果,这些方法在时间上是第一和第二顺序的,可以比通常使用的直隐方法更快,特别是在极其庞大的系统的情况下。