Semi-discrete and fully discrete mixed finite element methods are considered for Maxwell-model-based problems of wave propagation in linear viscoelastic solid. This mixed finite element framework allows the use of a large class of existing mixed conforming finite elements for elasticity in the spatial discretization. In the fully discrete scheme, a Crank-Nicolson scheme is adopted for the approximation of the temporal derivatives of stress and velocity variables. Error estimates of the semi-discrete and fully discrete schemes, as well as an unconditional stability result for the fully discrete scheme, are derived. Numerical experiments are provided to verify the theoretical results.


翻译:考虑采用半分异和完全离散的混合有限元素方法,处理基于模型的马克斯韦尔在线性粘弹性固体中波波传播问题。这一混合有限元素框架允许在空间离散中使用大量现有混合的、符合弹性的有限元素。在完全离散的方案中,为压力和速度变量的暂时衍生物的近似采用了克朗-尼科尔森办法。半分异和完全离散的系统错误估计,以及完全离散的系统无条件的稳定结果。提供了数字实验,以核实理论结果。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
52+阅读 · 2020年11月17日
专知会员服务
93+阅读 · 2020年10月30日
CVPR 2020 论文大盘点-光流篇
计算机视觉life
9+阅读 · 2020年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
VIP会员
Top
微信扫码咨询专知VIP会员