We propose a fast algorithm for the probabilistic solution of boundary value problems (BVPs), which are ordinary differential equations subject to boundary conditions. In contrast to previous work, we introduce a Gauss--Markov prior and tailor it specifically to BVPs, which allows computing a posterior distribution over the solution in linear time, at a quality and cost comparable to that of well-established, non-probabilistic methods. Our model further delivers uncertainty quantification, mesh refinement, and hyperparameter adaptation. We demonstrate how these practical considerations positively impact the efficiency of the scheme. Altogether, this results in a practically usable probabilistic BVP solver that is (in contrast to non-probabilistic algorithms) natively compatible with other parts of the statistical modelling tool-chain.
翻译:我们建议一种快速算法,用于对边界价值问题(BVPs)进行概率性解决,这是受边界条件制约的普通差异方程式。与以往的工作不同,我们采用Gauss-Markov先前的算法,并具体针对BVPs进行定制,允许在线性时间计算解决方案的后方分布,其质量和成本可与既定的、非概率性方法相仿。我们的模型进一步提供了不确定性的量化、网状精细和超参数适应。我们展示了这些实际考虑是如何对计划效率产生积极影响的。总而言之,这导致了一种(与非概率性算法相比)与统计建模工具链的其他部分相容的本性实用性概率性BVP解算法。