This paper explores the use of deep neural networks for semiparametric estimation of economic models of maximizing behavior in production or discrete choice. We argue that certain deep networks are particularly well suited as a nonparametric sieve to approximate regression functions that result from nonlinear latent variable models of continuous or discrete optimization. Multi-stage models of this type will typically generate rich interaction effects between regressors ("inputs") in the regression function so that there may be no plausible separability restrictions on the "reduced-form" mapping form inputs to outputs to alleviate the curse of dimensionality. Rather, economic shape, sparsity, or separability restrictions either at a global level or intermediate stages are usually stated in terms of the latent variable model. We show that restrictions of this kind are imposed in a more straightforward manner if a sufficiently flexible version of the latent variable model is in fact used to approximate the unknown regression function.
翻译:本文探讨了利用深神经网络对生产或离散选择中行为最大化的经济模型进行半参数估计的深神经网络。 我们争辩说,某些深度网络特别适合作为非参数筛选,以接近由连续或离散优化的非线性潜伏变量模型产生的回归功能。这种多阶段模型通常会在回归函数中的倒退者(“投入”)之间产生丰富的互动效应,这样“缩放式”绘图可能不会构成对产出的可能的分离性限制,以缓解维度的诅咒。相反,经济形状、宽度或分离性限制通常以潜伏变量模型的形式表述于全球或中间阶段。我们表明,如果对潜在变量模型使用足够灵活的版本来估计未知的回归功能,那么这种限制就会以更直接的方式实施。