This paper explores the use of deep neural networks for semiparametric estimation of economic models of maximizing behavior in production or discrete choice. We argue that certain deep networks are particularly well suited as a nonparametric sieve to approximate regression functions that result from nonlinear latent variable models of continuous or discrete optimization. Multi-stage models of this type will typically generate rich interaction effects between regressors ("inputs") in the regression function so that there may be no plausible separability restrictions on the "reduced-form" mapping form inputs to outputs to alleviate the curse of dimensionality. Rather, economic shape, sparsity, or separability restrictions either at a global level or intermediate stages are usually stated in terms of the latent variable model. We show that restrictions of this kind are imposed in a more straightforward manner if a sufficiently flexible version of the latent variable model is in fact used to approximate the unknown regression function.


翻译:本文探讨了利用深神经网络对生产或离散选择中行为最大化的经济模型进行半参数估计的深神经网络。 我们争辩说,某些深度网络特别适合作为非参数筛选,以接近由连续或离散优化的非线性潜伏变量模型产生的回归功能。这种多阶段模型通常会在回归函数中的倒退者(“投入”)之间产生丰富的互动效应,这样“缩放式”绘图可能不会构成对产出的可能的分离性限制,以缓解维度的诅咒。相反,经济形状、宽度或分离性限制通常以潜伏变量模型的形式表述于全球或中间阶段。我们表明,如果对潜在变量模型使用足够灵活的版本来估计未知的回归功能,那么这种限制就会以更直接的方式实施。

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年7月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关VIP内容
专知会员服务
23+阅读 · 2021年7月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员