Cell-free (CF) massive multiple-input-multiple-output (mMIMO) deployments are usually investigated with half-duplex nodes and high-capacity fronthaul links. To leverage the possible gains in throughput and energy efficiency (EE) of full-duplex (FD) communications, we consider a FD CF mMIMO system with practical limited-capacity fronthaul links. We derive closed-form spectral efficiency (SE) lower bounds for this system with maximum-ratio combining/maximum-ratio transmission processing and optimal uniform quantization. We then optimize the weighted sum EE (WSEE) via downlink and uplink power control by using a {two-layered} approach: the first layer formulates the optimization as a generalized convex program, while the second layer solves the optimization decentrally using alternating direction method of multipliers. We analytically show that the proposed two-layered formulation yields a Karush-Kuhn-Tucker point of the original WSEE optimization. We numerically show the influence of weights on the individual EE of the users, which demonstrates the utility of WSEE metric to incorporate heterogeneous EE requirements of users. We show that the low fronthaul capacity reduces the number of users each AP can support, and the cell-free system, consequently, becomes user-centric.
翻译:无细胞(CF)大规模多投入-多输出(MIMO)部署通常使用半双倍节点和高容量前厅链接来调查。为了利用全双倍(FD)通信的输送量和能源效率(EE)的可能收益,我们认为FD CF MMIMIM(FD)系统具有实际有限的前厅连接功能。我们从这个系统中获得封闭式光谱效率(SE)较低界限,拥有最大拉皮/最大拉皮传输处理和最佳统一量化。我们然后通过下链接和高容量前厅链接优化加权总和EEE(WSEEE)的电力控制:第一层将优化作为通用的convex(EEE)方案,而第二层则使用交替的倍数方向方法集中解决优化问题。我们分析显示,拟议的两层配方能够产生最初WSEEEE优化的Karush-Kuhn-Tucker点。我们用数字显示对用户个人EEE的重量的影响,我们从数字上显示每个前端用户的通用度要求。