Artificial intelligence (AI) applications in healthcare and medicine have increased in recent years. To enable access to personal data, Trusted Research environments (TREs) provide safe and secure environments in which researchers can access sensitive personal data and develop Artificial Intelligence (AI) and Machine Learning models. However currently few TREs support the use of automated AI-based modelling using Machine Learning. Early attempts have been made in the literature to present and introduce privacy preserving machine learning from the design point of view [1]. However, there exists a gap in the practical decision-making guidance for TREs in handling models disclosure. Specifically, the use of machine learning creates a need to disclose new types of outputs from TREs, such as trained machine learning models. Although TREs have clear policies for the disclosure of statistical outputs, the extent to which trained models can leak personal training data once released is not well understood and guidelines do not exist within TREs for the safe disclosure of these models. In this paper we introduce the challenge of disclosing trained machine learning models from TREs. We first give an overview of machine learning models in general and describe some of their applications in healthcare and medicine. We define the main vulnerabilities of trained machine learning models in general. We also describe the main factors affecting the vulnerabilities of disclosing machine learning models. This paper also provides insights and analyses methods that could be introduced within TREs to mitigate the risk of privacy breaches when disclosing trained models.


翻译:近年来,为了便于获取个人数据,受信任的研究环境提供了安全可靠的环境,使研究人员能够获取敏感的个人数据,并开发人工智能和机器学习模式。然而,目前很少有技术资源支持使用机械学习的自动AI型模型。文献中已初步尝试从设计角度介绍和引入隐私保护机器学习[1]。然而,在处理模型披露方面,在TRES的实际决策指导方面存在差距。具体地说,使用机器学习使得需要披露TRES的新型产出,例如经过培训的机器学习模式。虽然TRES有明确的政策披露统计产出,但经过培训的模式在发布后能够泄漏个人培训数据的程度并没有得到很好理解,在TRES内部没有关于安全披露这些模型的指导方针。在本文中,我们介绍了从TRES披露经过培训的机器学习模式的挑战。我们首先概要介绍了一般的机器学习模式,并描述了在医疗和医学领域应用的一些新类型,例如经过培训的机器学习模式。我们还可以在经过培训的模型中描述经培训的个人培训的弱点,从而了解在机器的深度评估过程中,我们还可以确定经培训的弱点。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员