In this brief note we present two new parameter identifiers whose estimates converge in finite time under weak interval excitation assumptions. The main novelty is that, in contrast with other finite-convergence time (FCT) estimators, our schemes preserve the FCT property when the parameters change. The previous versions of our FCT estimators can track the parameter variations only asymptotically. Continuous-time and discrete-time versions of the new estimators are presented


翻译:在本简短说明中,我们提出了两个新的参数识别符号,其估计值在短短的间隔引力假设下以有限的时间在有限的时间内汇合。主要的新颖之处是,与其他有限的聚合时间估计器(FCT)不同的是,我们的计划在参数变化时保留了FCT属性。我们以前的FCT估计器只能不时跟踪参数的变化。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
222+阅读 · 2020年6月5日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员