Knowledge graphs (KGs) have the advantage of providing fine-grained detail for question-answering systems. Unfortunately, building a reliable KG is time-consuming and expensive as it requires human intervention. To overcome this issue, we propose a novel framework to automatically construct a KG from unstructured documents that does not require external alignment. We first extract surface-form knowledge tuples from unstructured documents and encode them with contextual information. Entities with similar context semantics are then linked through internal alignment to form a graph structure. This allows us to extract the desired information from multiple documents by traversing the generated KG without a manual process. We examine its performance in retrieval based QA systems by reformulating the WikiMovies and MetaQA datasets into a tuple-level retrieval task. The experimental results show that our method outperforms traditional retrieval methods by a large margin.
翻译:知识图形( KGs) 具有为问答系统提供精细细节的优势。 不幸的是, 建立可靠的 KG 需要人手干预, 耗时费钱。 要克服这个问题, 我们建议了一个新框架, 从不需要外部对齐的无结构文档中自动构造 KG 。 我们首先从无结构文档中提取表面形态知识图, 并用背景信息编码这些图。 具有类似背景语义的实体随后通过内部对齐链接而形成图形结构。 这使我们能够通过不经过手工操作的尝试生成的 KG 来从多个文档中提取所需的信息。 我们通过将 WikiMovies 和 MetaQA 数据集改编成一顶级检索任务来检查其在基于检索的 QA 系统中的性能。 实验结果显示, 我们的方法大大超越了传统的检索方法 。