We introduce an algorithm for estimating the trace of a matrix function $f(\mathbf{A})$ using implicit products with a symmetric matrix $\mathbf{A}$. Existing methods for implicit trace estimation of a matrix function tend to treat matrix-vector products with $f(\mathbf{A})$ as a black-box to be computed by a Krylov subspace method. Like other recent algorithms for implicit trace estimation, our approach is based on a combination of deflation and stochastic trace estimation. However, we take a closer look at how products with $f(\mathbf{A})$ are integrated into these approaches which enables several efficiencies not present in previously studied methods. In particular, we describe a Krylov subspace method for computing a low-rank approximation of a matrix function by a computationally efficient projection onto Krylov subspace.
翻译:暂无翻译