Privacy-preserving solutions enable companies to offload confidential data to third-party services while fulfilling their government regulations. To accomplish this, they leverage various cryptographic techniques such as Homomorphic Encryption (HE), which allows performing computation on encrypted data. Most HE schemes work in a SIMD fashion, and the data packing method can dramatically affect the running time and memory costs. Finding a packing method that leads to an optimal performant implementation is a hard task. We present a simple and intuitive framework that abstracts the packing decision for the user. We explain its underlying data structures and optimizer, and propose a novel algorithm for performing 2D convolution operations. We used this framework to implement an HE-friendly version of AlexNet, which runs in three minutes, several orders of magnitude faster than other state-of-the-art solutions that only use HE.
翻译:隐私保护解决方案使公司能够在履行其政府条例的同时将机密数据卸到第三方服务中。 为此,它们利用各种加密技术,如允许对加密数据进行计算的数字加密(HE ) 。 多数高专计划以SIMD方式运作,而数据包装方法可以极大地影响运行时间和记忆成本。 找到一个能够实现最佳性能执行的包装方法是一项艰巨的任务。 我们提出了一个简单和直观的框架,为用户摘要介绍包装决定。 我们解释了其基本数据结构和优化程序,并提出了进行2D演动操作的新型算法。 我们使用这个框架来实施一个HE友好型的亚历克斯Net版本,其运行时间和记忆成本为三分钟,比其他仅使用HE的最先进的解决方案快几个数量级。