In the research of end-to-end dialogue systems, using real-world knowledge to generate natural, fluent, and human-like utterances with correct answers is crucial. However, domain-specific conversational dialogue systems may be incoherent and introduce erroneous external information to answer questions due to the out-of-vocabulary issue or the wrong knowledge from the parameters of the neural network. In this work, we propose PK-Chat, a Pointer network guided Knowledge-driven generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs. The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge. Moreover, based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences. Finally, an academic dialogue benchmark is constructed to evaluate the quality of dialogue systems in academic scenarios and the source code is available online.
翻译:在端到端对话系统的研究中,利用真实世界知识生成自然、流畅且类似人类的话语并给出正确的答案至关重要。然而,领域特定的对话系统可能由于神经网络参数的词表不足或错误的知识而变得不连贯并引入错误的外部信息来回答问题。在本研究中,我们提出基于指针网络的知识驱动生成对话模型 PK-Chat,将预训练语言模型和知识图上的指针网络统一融合。PK-Chat 在对话中生成的单词来自预测的单词列表和外部知识图的直接预测。此外,基于 PK-Chat,在地球科学的学术场景中构建了一个对话系统。最后,构建了一份用于评估学术场景下对话系统质量的学术对话基准,并且源代码可以在线获取。