Generalized additive models (GAMs) are a commonly used, flexible framework applied to many problems in statistical ecology. GAMs are often considered to be a purely frequentist framework (`generalized linear models with wiggly bits'), however links between frequentist and Bayesian approaches to these models were highlighted early on in the literature. Bayesian thinking underlies many parts of the implementation in the popular R package \texttt{mgcv} as well as in GAM theory more generally. This article aims to highlight useful links (and differences) between Bayesian and frequentist approaches to smoothing, and their practical applications in ecology (with an \texttt{mgcv}-centric viewpoint). Here I give some background for these results then move onto two important topics for quantitative ecologists: term/model selection and uncertainty estimation.


翻译:通用添加模型(GAMS)是一个常用的灵活框架,适用于统计生态的许多问题,GAMS通常被视为纯粹的常态框架(“通用线性模型,带有假发位元”),不过,文献早期就强调了常住者和贝叶斯人对这些模型的做法之间的联系,巴伊西亚人的思维是流行的R包(texttt{mgcv})以及更普遍的GAM理论中许多执行部分的基础,这一条旨在强调巴伊西亚人和常住者对平滑法的有益联系(和差异)及其在生态中的实际应用(以\ textt{mgcv}中心观点为中心)。在这里,我为这些结果提供了一些背景,然后转到两个重要的专题,即术语/模式选择和不确定性估计。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
29+阅读 · 2021年8月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
专知会员服务
29+阅读 · 2021年8月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员