In the age of the Internet, people's lives are increasingly dependent on today's network technology. However, network technology is a double-edged sword, bringing convenience to people but also posing many security challenges. Maintaining network security and protecting the legitimate interests of users is at the heart of network construction. Threat detection is an important part of a complete and effective defense system. In the field of network information security, the technical update of network attack and network protection is spiraling. How to effectively detect unknown threats is one of the concerns of network protection. Currently, network threat detection is usually based on rules and traditional machine learning methods, which create artificial rules or extract common spatiotemporal features, which cannot be applied to large-scale data applications, and the emergence of unknown threats causes the detection accuracy of the original model to decline. With this in mind, this paper uses deep learning for advanced threat detection to improve cybersecurity resilienc e in the financial industry. Many network security researchers have shifted their focus to exceptio n-based intrusion detection techniques. The detection technology mainly uses statistical machine learning methods - collecting normal program and network behavior data, extracting multidimensional features, and training decision machine learning models on this basis (commonly used include naive Bayes, decision trees, support vector machines, random forests, etc.). In the detection phase, program code or network behavior that deviates from the normal value beyond the tolerance is considered malicious code or network attack behavior.
翻译:暂无翻译