Functional Distributional Semantics is a recently proposed framework for learning distributional semantics that provides linguistic interpretability. It models the meaning of a word as a binary classifier rather than a numerical vector. In this work, we propose a method to train a Functional Distributional Semantics model with grounded visual data. We train it on the Visual Genome dataset, which is closer to the kind of data encountered in human language acquisition than a large text corpus. On four external evaluation datasets, our model outperforms previous work on learning semantics from Visual Genome.
翻译:功能分布语义学是最近提出的学习分布语义框架,它提供语言解释性。它将一个单词的含义建模为二进制分类器,而不是数字矢量。在这项工作中,我们提出一种方法,用有基础的视觉数据来培训功能分布语义模型。我们用视觉基因组数据集来培训它,它比大文本库更接近于在获取人类语言中遇到的数据类型。在四个外部评价数据集中,我们的模型比以前从视觉基因组中学习语义学的工作要好。