项目名称: 热障涂层的冲蚀破坏机理研究

项目编号: No.11272275

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杨丽

作者单位: 湘潭大学

项目金额: 86万元

中文摘要: 耐高温,高隔热的热障涂层因为能降低基底的工作温度,提高发动机的性能与热效率,成为了高性能航空发动机的关键热防护材料,它的安全应用被公认为是目前大幅度提高航空发动机工作温度最切实可行的方法。然而,航空发动机在飞行过程中,将不可避免的受到燃烧室内各种杂质以及外来颗粒的撞击,从而发生冲蚀失效,这一失效已成为制约热障涂层服役性能及其安全应用的重要瓶颈。如能正确理解热障涂层冲蚀破坏的机理,找出评价热障涂层冲蚀性能的关键物理、力学性能参数,则为优化热障涂层的材料设计、制备工艺提供直接的依据和指导。本申请项目以"提高热障涂层抗冲蚀破坏的能力,提高我国热障涂层的设计与制备技术,指导其在航空发动机中的安全应用"为目标,通过发展热障涂层冲蚀失效的实验技术,采用量纲分析并结合有限元模拟确立影响热障涂层冲蚀性能的关键参数,并以此建立热障涂层冲蚀失效的破坏机制图,为热障涂层的优化与应用提供清晰的物理图像。

中文关键词: 热障涂层;冲蚀;破坏机理;;

英文摘要: Thermal barrier coatings (TBCs), with the high temperature durability and excellent heat insulation, can reduce the metal surface temperature and result in a significant increase in performance and efficiency of gas turbine engines. Therefore, TBCs have been developed as a key technique for heat protection and regarded as the reliable way to improve the work temperature of aeroengines. However, during flight TBCs are unavoidable impacted by particles from combustion chambers or foreign objects, and result in erosion, which has become a main bottleneck of service performance and reliability. Once the key physical or mechanical parameters are found in the evaluation of their performance through a good understanding of erosion mechanisms, a direct guidance can be obtained to optimize the material design and preparation process of TBCs. The purpose of this project is to improve the erosion performance, enhance the design and peraparing technique of TBCs, and then guide the their applications in aeroengines made in China. In combination with the experimental techniques of TBCs erosion to be developed with the dimensional analysis and finite element simulations, the key parameters resulting in erosion will be determined. Based on these parameters, the failure mechanism map will be established, which will provide a cle

英文关键词: thermal barrier coatings;erosion;damage mechanism;;

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS2021】未见深度架构参数预测
专知会员服务
9+阅读 · 2021年10月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
220+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
【贺岁】中国图象图形学学会恭祝您新春快乐!
中国图象图形学学会CSIG
0+阅读 · 2022年1月31日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
0+阅读 · 2022年4月30日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
0+阅读 · 2022年4月28日
小贴士
相关主题
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS2021】未见深度架构参数预测
专知会员服务
9+阅读 · 2021年10月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
187+阅读 · 2021年2月4日
专知会员服务
220+阅读 · 2020年8月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员