Pointwise localization allows more precise localization and accurate interpretability, compared to bounding box, in applications where objects are highly unstructured such as in medical domain. In this work, we focus on weakly supervised localization (WSL) where a model is trained to classify an image and localize regions of interest at pixel-level using only global image annotation. Typical convolutional attentions maps are prune to high false positive regions. To alleviate this issue, we propose a new deep learning method for WSL, composed of a localizer and a classifier, where the localizer is constrained to determine relevant and irrelevant regions using conditional entropy (CE) with the aim to reduce false positive regions. Experimental results on a public medical dataset and two natural datasets, using Dice index, show that, compared to state of the art WSL methods, our proposal can provide significant improvements in terms of image-level classification and pixel-level localization (low false positive) with robustness to overfitting. A public reproducible PyTorch implementation is provided in: https://github.com/sbelharbi/wsol-min-max-entropy-interpretability .
翻译:与约束框相比,点点本地化使得在物体高度无结构(如医疗领域)的应用程序中,可以更为精确的本地化和准确的解读。在这项工作中,我们侧重于监管不力的地方化(WSL),对模型进行了培训,将像素层面感兴趣的区域进行图像分类和本地化,仅使用全球图像注释。典型的卷变关注地图被推向高的虚假积极区域。为了缓解这一问题,我们提议了由本地化器和分类器组成的WSL新的深层次学习方法,由本地化器和分类器组成,在本地化器中,地方化器只能使用有条件的酶(CE)来确定相关和不相关的区域,目的是减少假阳性区域。在公共医疗数据集和两个自然数据集的实验结果中,使用Dice指数显示,与艺术WSLSL方法的状况相比,我们的提案可以在图像级别分类和像素级本地化(低假阳性)方面提供重大改进,并具有超标性。公众可复制的PyTorch 实施PyTorch, 提供公开可复制的PyTochnchn,目的是-internable: https://gy-intermaxb.comb.commbly/bilent-commbly-commbly/s-commbly-committenttenttent-commit-committable-commtable.