Cross-entropy loss is the standard metric used to train classification models in deep learning and gradient boosting. It is well-known that this loss function fails to account for similarities between the different values of the target. We propose a generalization of entropy called {\em structured entropy} which uses a random partition to incorporate the structure of the target variable in a manner which retains many theoretical properties of standard entropy. We show that a structured cross-entropy loss yields better results on several classification problems where the target variable has an a priori known structure. The approach is simple, flexible, easily computable, and does not rely on a hierarchically defined notion of structure.
翻译:跨热带损失是用于在深层学习和梯度推升方面培训分类模型的标准衡量标准。 众所周知, 这一损失函数没有考虑到目标不同值之间的相似性。 我们建议对称为 yem 结构化 entropy 的 entropy 进行概括化处理, 使用随机分割法将目标变量的结构纳入其中, 从而保留了标准的 entropy 的许多理论属性 。 我们显示, 结构化的跨热带损失在目标变量具有先知结构的情况下, 在若干分类问题上产生更好的结果。 这种方法简单、灵活、 容易计算, 并且不依赖于按等级界定的结构概念 。